Selasa, September 01, 2009

4 Macam Tipe Data Statistik

Pengetahuan mengenai tipe2 data adalah penting di dalam statistika. Terdapat 4 tipe data, diurutkan mulai dari tingkatan terendah hingga tertinggi:

1.Nominal
Digunakan untuk mengklasifikasikan informasi/data. Contoh:Data jenis kelamin = Laki-laki dan Perempuan. Biasanya, saat analisis data, tipe data spt ini dilambangkan dg bilangan numerik (angka).Laki-laki dilambangkan dengan angka 1, sedangkan perempuan dilambangkan dengan angka 0. Tidak berarti angka 0 lebih rendah dari angka 1, ingat!! cuma melambangkan saja.

2. Ordinal
Digunakan untuk mengklasifikasikan serta memiliki tingkatan. Tipe data ordinal lebih tinggi dari Nominal karena kemampuannya untuk membentuk tingkatan. Contoh:Jabatan di dalam perusahaan = karyawan, manager, direktur utama. Misal, karyawan dilambangkan dengan 1, manager dg 2, dan direktur utama dengan 3. Pada tipe data ini, angka 1 dianggap lebih rendah dari angka 2, dst. Bisa saja karyawan dilambangkan dengan angka 1, tetapi manager angka 3 dan direktur utama dengan angka 10. Tipe data ini tidak mensaratkan jarak yang sama antar angka yang digunakan sebagai lambang. Yang perlu diperhatikan hanyalah bahwa angka 3 lebih tinggi dari angka 1, angka 10 lebih tinggi dari angka 3.

3. Interval
Ciri khas dari tipe data ini, selain memiliki kemampuan mengklasifikasikan dan membentuk tingkatan, adalah tidak adanya nilai nol mutlak. Artinya, angka nol yg digunakan bukan berarti tidak ada. Contoh: Derajat suhu. Di dalam skala Celcius misalnya, Nol derajat Celcius bukan berarti tidak ada suhu. Nol derajat itu memiliki suhu, hanya saja dilambangkan dengan nol. Selain itu, jarak antar setiap angka yg digunakan adalah sama. Misal: di dalam kuesioner, ada tingkatan dari TIDAK SETUJU (lambang: 1) s.d. SANGAT SETUJU (lambang: 5). Jarak antara SANGAT SETUJU (5) dg SETUJU (4) adalah 1, yaitu 5-4=1. Jarak antara SETUJU (4) dg RAGU-RAGU (3) juga = 1, yaitu 4-3=1. dst.

4. Rasio
Memiliki kemampuan dari ketiga tipe data sebelumnya, dan angka nol dianggap mutlak. Contoh: data berat badan (kg). Angka Nol kg berarti memang tidak ada berat.
Tipe data nominal dan ordinal sering digunakan pada metode statistika nonparametrik. Sedangkan tipe data interval dan rasio cocok untuk digunakan pada metode statistika parametrik, asal asumsi yang dibutuhkan oleh metode statistika parametrik yang bersangkutan dapat dipenuhi.

=================================
Beta Consulting ( Bengkeldata.com ) siap membantu perusahaan/perorangan dalam melakukan analisa data statistika, olah data penelitian , riset pasar dan konsultasi manajemen.

LAYANAN
1. Olah Data Statistika/ Penelitian : Uji Time Series (AR, MA, ARMA, ARIMA), Uji Optimasi Saham dengan Sharpe Index, dll
2. Training Statistika : SPSS, Eview, SAS, Lisrel, Minitab, Amos
3. Riset Pasar
4. Management Consultancy

Hubungi:
Beta Consulting ( Bengkeldata.com )
Telp: (021) 71088944 emaiL : info@bengkeldata.com

Belum Ada Komentar

Arsip Blog

@ All Right reserved 2008. Edited By JuraganTAHU Design by usuario ^